Для проведения экспериментов Джорджу Томсону потребовалось около тонны окиси урана. Его целью было получить ответ на вопрос: можно ли осуществить продолжительную цепную реакцию, используя окись урана и воду или парафин в качестве замедлителя? Интересно, что парафин Томсон и его сотрудники добывали из обычных елочных свечек. Главная проблема состояла в том, чтобы найти такие варианты комбинаций окиси и замедлителя, которые обеспечили бы желаемое размножение нейтронов. Проходило лето, и становилось все более очевидным, что получение цепной реакции в уране таким способом – дело сложное. И к концу августа 1939 года физикам стало казаться, что высвобождение атомной энергии – дело отдаленного будущего. Выход следовало искать в использовании тяжелой воды, но в Великобритании ее было очень мало.
Такие пессимистические, но хорошо обоснованные взгляды сказались на содержании письма, направленного в конце последнего предвоенного лета Уинстоном Черчиллем государственному секретарю по авиации Кингсли Вуду:
Несколько недель назад одна из воскресных газет поместила статью об огромных количествах энергии, которую можно выделить из урана с помощью недавно открытых цепных процессов, возникающих при расщеплении атома урана нейтронами. На первый взгляд могло показаться, что это предвещает появление новых взрывчатых веществ сокрушительной мощности. <…>
Возможно, что будут умышленно распускаться слухи (как делается всегда, когда усиливается международная напряженность) относительно использования этого процесса для производства какого-то ужасающего нового секретного взрывчатого вещества, способного смести Лондон с лица Земли. Несомненно, что «пятая колонна» попытается повлиять на нас и посредством этой угрозы посеять дух капитуляции. По этой причине категорически необходимо установить истинное положение дел.
Во-первых, самые лучшие авторитеты считают, что лишь небольшая составная часть урана эффективно участвует в этих процессах. Использование же их в крупных масштабах – дело многих лет. Во-вторых, цепная реакция возможна лишь в том случае, если уран собран в большую массу. По мере нарастания энергии масса будет взрываться с умеренной детонацией, до того как произойдут какие-либо сильные эффекты. Это может оказаться тем же, что и современные взрывчатые вещества, и маловероятно, чтобы могло произойти что-нибудь значительно более опасное. В-третьих, данные эксперименты не могут быть проведены в малом масштабе. Если бы они были успешно выполнены в большом масштабе (то есть с результатами, которые угрожали бы нам вне зависимости от шантажа), то это невозможно было удержать в секрете и мы бы узнали о них. В-четвертых, на территории Чехословакии, контролируемой Берлином, урана имеется сравнительно немного.
Поэтому боязнь того, что новое открытие обеспечит нацистов каким-то зловещим новым секретным взрывчатым веществом, с помощью которого они уничтожат своих противников, очевидно, не имеет оснований. Несомненно, будут делаться туманные намеки и непрестанно распускаться пугающие шепотки, но следует надеяться, что никто им не поддастся.
Многие замыслы об атомной бомбе, в сентябре 1939 года казавшиеся в какой-то степени реальными, в первые месяцы войны потеряли всякое значение. В научно-популярных журналах еще могла обсуждаться возможность такого оружия, однако физики имели другое мнение на этот счет. Они знали, что с помощью замедленных нейтронов можно изготовить «котел», но бомбу с разрушительной силой, оправдывающей затраченные на нее усилия, – едва ли. Что касается быстрых нейтронов, то они, казалось, никогда не смогут стать спусковым механизмом чудовищного взрыва.
Такое безнадежное положение дел обернулось реальным прорывом из-за двух обстоятельств. Одним из них стало подстегивающее действие страха при мысли, что кто-то в Германии найдет ключ к решению проблемы (чего совершенно не было в США, если исключить Лео Силарда с его богатым воображением). Другим была не потерянная еще уверенность, что небывалый взрыв все же можно получить, если изготовить блок из чистого урана, превосходящий «критическую массу». В таком блоке быстрые нейтроны могли быть достаточно эффективными, чтобы произвести взрыв, даже если большая часть их захватят ядра урана-238.
О такой возможности физики знали давно, и в начале 1939 года она служила темой для шуток, которые можно было слышать в студенческих аудиториях Кембриджа. Говорили, что физики в состоянии легко разрешить «проблему Гитлера». Достаточно сотрудникам дюжины лабораторий упаковать в виде посылок имеющийся у них уран, адресовать их фюреру и высылать почтой по заранее составленному расписанию. Посылки стали бы прибывать в различное время дня и попадать к Гитлеру на письменный стол. Наконец прибудет последняя «критическая» посылка. Самая тщательная проверка ничего не даст: посылка будет выглядеть совершенно безобидно до тех пор, пока ее не положат на стол рядом с остальными. И в тот же момент фюрер исчезнет в пламени атомного взрыва.
Как бы ни шутили, оставалось препятствие, кажущееся непреодолимым: вопрос о размере критической массы. Хотя точных чисел назвать никто не мог, а вычисления были весьма сложными, ученые представляли себе, что критическая масса, если она вообще существует, должна значительно превосходить все количество чистого урана, добытого за год. Высказывались предположения, что если бы даже и удалось ее получить, то взрыв атомной бомбы был бы эквивалентен взрыву нескольких тонн тринитротолуола или аналогичного ему химического взрывчатого вещества – и не больше.
В Великобритании разрешением этого вопроса занимался берлинец Рудольф Пайерлс, эмигрировавший сначала в Цюрих, а затем перебравшийся в Кембридж. Пайерлс, подобно многим другим эмигрантам, испытавшим на себе давление нацистского режима, постоянно находился в тревоге из-за слухов о том, что в Германии может появиться оружие, с помощью которого Гитлер поработит весь мир. Летом 1939 года профессор Пайерлс решил определить критическую массу блока из чистого урана. Вопрос и ответ, приведенные в статье, полученной Кембриджским физическим обществом 14 июня, носили вроде бы чисто академический характер. Пайерлс писал, что цепная реакция, вызываемая размножением нейтронов, по-видимому, осуществима в чистом уране. Он добавлял, что «размножение нейтронов возможно только в том случае, если путь, пройденный каждым нейтроном внутри тела, достаточен, чтобы произошло столкновение». Далее он предлагал серии уравнений, в которые было необходимо лишь подставить ядерные константы, чтобы получить критическую массу урана (то есть размер возможной бомбы). Позднее он рассказывал, что его проверочный расчет давал массу в несколько тонн и огромные размеры, поэтому он с легкой душой отправил статью в печать, полагая, что такую «махину» никогда и никто построить не сможет. Статья под заголовком «Критические условия процесса размножения нейтронов» была опубликована в октябрьском выпуске «Трудов Кембриджского физического общества» – через несколько недель после начала войны.
Тут эстафету подхватил Джеймс Чедвик – тот самый английский физик, который в 1932 году открыл нейтрон. Через три года после своего выдающегося открытия Чедвик перебрался из Кембриджа в Ливерпуль, где занялся сооружением первого британского циклотрона. К началу 1939 года на циклотроне было проведено немало работ, и Чедвику удалось сколотить неплохой коллектив экспериментаторов. Среди них был талантливый молодой поляк Джозеф Ротблат, первым осуществивший в Варшаве эксперименты по ядерному делению.