Разумеется, физическое состояние опорно-двигательной системы, ее тренированность, способность к «взрывному» характеру реакций играют важнейшую роль в критической ситуации, но не менее важным фактором является срабатывание инстинктивной корково-подкорковой программы движений, следующих за принятием решения.
На схеме 10 показана организация двигательного акта при любой ответной реакции на сигнал внешней среды. Сигнал поступает в ЦНС по сенсорным каналам и запускает вначале систему оценки или биологической значимости сигнала. В моторных зонах коры возникает программа двигательного акта, затем эфферентные сигналы от пирамидных клеток Беца поступают по нисходящим пирамидным трактам в передние рога соответствующего сегмента спинного мозга, где активируют мотонейроны, приводящие к передаче моторных сигналов непосредственно к мышцам, реализующим конкретный двигательный акт.
Схема 10
Организация, регуляция и контроль движений
В то же время проприорецепторы мышц, сухожилий, связок активируются самим сокращением мышц и изменением положения конечности (сустава) в пространстве.
Сигналы от мышечно-суставного аппарата по восходящим трактам поступают в подкорковые структуры, а затем в зрительные зоны коры, куда одновременно приходят сигналы с органов зрения, контролирующих двигательный акт.
Аналогичная картина происходит и с сигналами, поступающими от проприорецепторов мышц к мозжечку, который координирует перемещение конечности в пространстве. Вестибулярный аппарат так же принимает самое непосредственное участие в организации и контроле за исполнением двигательного акта.
Вполне понятно, что на организацию даже сравнительно простого движения (например, верхней конечности, берущей карандаш) требуется время, в течение которого афферентные и эфферентные сигналы проходят по аксонам нейронов, переключаются в многочисленных синапсах, конвергируют, возбуждают массу релейных и вставочных клеток и т. д.
Организму было бы трудно выжить в условиях экстремальных ситуаций, если бы при возникновении очередной или каждой из них он был вынужден заново формировать и просчитывать все этапы развития ответной реакции.
Но за миллионы лет эволюции организмы сумели выработать не только тот комплекс ответных реакций, который базируется на инстинктах, но и создать (особенно у позвоночных животных, млекопитающих и приматов) более совершенные механизмы восприятия и оперативной обработки сигналов, выстраивающих адекватную ответную реакцию организма в минимально возможные промежутки времени.
Выдающийся физиолог нашего времени, ученик И.П. Павлова — П.К. Анохин детально разработал механизм оперативных функциональных систем, формирующихся в ЦНС при решении каждой конкретной задачи для целостного организма. На схеме 11 мы приводим несколько упрощенную схему построения функциональной системы (по П.К. Анохину).
Схема 11
Структура функциональной системы
Из приведенной схемы следует, что афферентный сигнал через сенсорные системы попадает вначале в подкорковые структуры ЦНС, а затем в кору больших полушарий, в соответствующие проекционные зоны. В этих зонах, а также в связанных с ними подкорковых структурах формируется аппарат афферентного анализа и синтеза, представляющий собой нейронные ансамбли, в которых анализируется качественная сторона сигнала, его сила (амплитуда), биологическая значимость, степень новизны и другие важные для организма характеристики. Формируется своеобразный информационный пакет, который затем передается в аппарат акцептора результата действия. Дело в том, что мозг хранит в своих блоках памяти если не все, то во всяком случае основные ситуации и картины всего, что имело биологически важное значение для организма. Здесь же хранится информация и о тех ответных реакциях организма (результатах), которые возникали в ответ на воздействие факторов внешней среды.
Аппарат акцептора результата действия также представляет собой определенные группы или комбинации групп нейронов и нейронных ансамблей в корково-подкорковых структурах мозга.
Именно здесь происходит более детальный анализ поступившего сигнала и формируется блок принятия решения, программа ответной реакции организма.
Затем включается исполнительный блок (механизм) и, как следствие, конечный результат действия.
Результат действия немедленно оценивается всей системой и вносятся соответствующие коррекции, что и закладывается в блоки памяти мозга.
При этом необходимо отметить, что в формировании различных функциональных систем могут быть задействованы одни и те же нейроны или нейрональные ансамбли. После срабатывания функциональной системы и оценки результата действия, функциональная система готова к созданию следующего паттерна или следующей системы, в которую снова могут быть включены те же самые нейроны и нейрональные группы, которые перед этим участвовали в решении предыдущей задачи. Если необходимо, мозг может извлекать из блоков памяти результаты других предшествовавших ответных реакций, комбинировать информацию и выстраивать иные, более сложные или более простые системы.
Мы остановились здесь столь подробно на механизме формирования функциональных систем лишь потому, что из анализа всего экспериментального и медико-биологического материала, накопленного при исследовании различных функциональных систем, следует один весьма важный для специалиста, изучающего человека в экстремальных ситуациях, вывод: функциональные системы, формирующиеся в ЦНС при решении любой (в том числе и экстремальной!) ситуации, могут быть скорректированы специальными приемами, позволяющими в более сжатые промежутки времени использовать уже имеющуюся в ЦНС информацию о других, сходных данной, ситуациях и, соответственно, выстроить более адекватную схему ответной реакции.
Блок принятия решения, выдающий пакет импульсов на исполнительную (моторную) систему, не является чем-то жестко задетерминированным, он также может поддаваться определенной коррекции и даже срабатывать с некоторым опережением, давая организму больше шансов на положительный конечный результат, который и является в конечном счете главным системообразующим фактором.
Литература по исследованию моделей функциональных систем — весьма обширна. И здесь можно обратиться к весьма нетривиальным моделям и исследованиям школы К.В. Судакова, что несомненно даст новый импульс к разработке проблемы человеческого фактора в экстремальных ситуациях.
На схеме 12 показана возможность развития событий и включения действующих факторов в формирование функциональной системы, реализующей в конечном счете реальные, резервные, а в исключительных случаях и запредельные возможности человека в экстремальной ситуации. Отработка, коррекция механизмов формирования такой функциональной системы должны заключаться в том, чтобы в максимально короткий промежуток времени реальные возможности ответной реакции человека были «смещены» к включению резервных возможностей или даже запредельных возможностей организма.