Нормальная физиология | Страница: 4

  • Georgia
  • Verdana
  • Tahoma
  • Symbol
  • Arial
16
px

В зависимости от скорости проведения возбуждения нервные волокна делятся на три типа: А, В, С.

Наибольшей скорость проведения возбуждения обладают волокна типа А, скорость проведения возбуждения которых достигает 120 м/с, В имеет скорость от 3 до 14 м/с, С – от 0,5 до 2 м/с.

Не следует смешивать понятия «нервное волокно» и «нерв». Нерв – комплексное образование, состоящее из нервного волокна (миелинового или безмиелинового), рыхлой волокнистой соединительной ткани, образующей оболочку нерва.

2. Механизмы проведения возбуждения по нервному волокну. Законы проведения возбуждения по нервному волокну

Механизм проведения возбуждения по нервным волокнам зависит от их типа. Существуют два типа нервных волокон: миелиновые и безмиелиновые.

Процессы метаболизма в безмиелиновых волокнах не обеспечивают быструю компенсацию расхода энергии. Распространение возбуждения будет идти с постепенным затуханием – с декрементом. Декрементное поведение возбуждения характерно для низкоорганизованной нервной системы. Возбуждение распространяется за счет малых круговых токов, которые возникают внутрь волокна или в окружающую его жидкость. Между возбужденными и невозбужденными участками возникает разность потенциалов, которая способствует возникновению круговых токов. Ток будет распространяться от «+» заряда к «—». В месте выхода кругового тока повышается проницаемость плазматической мембраны для ионов Na, в результате чего происходит деполяризация мембраны. Между вновь возбужденным участком и соседним невозбужденным вновь возникает разность потенциалов, что приводит к возникновению круговых токов. Возбуждение постепенно охватывает соседние участки осевого цилиндра и так распространяется до конца аксона.

В миелиновых волокнах благодаря совершенству метаболизма возбуждение проходит, не затухая, без декремента. За счет большого радиуса нервного волокна, обусловленного миелиновой оболочкой, электрический ток может входить и выходить из волокна только в области перехвата. При нанесения раздражения возникает деполяризация в области перехвата А, соседний перехват В в это время поляризован. Между перехватами возникает разность потенциалов, и появляются круговые токи. За счет круговых токов возбуждаются другие перехваты, при этом возбуждение распространяется сальтаторно, скачкообразно от одного перехвата к другому. Сальтаторный способ распространения возбуждения экономичен, и скорость распространения возбуждения гораздо выше (70—120 м/с), чем по безмиелиновым нервным волокнам (0,5–2 м/с).

Существует три закона проведения раздражения по нервному волокну.

Закон анатомо-физиологической целостности.

Проведение импульсов по нервному волокну возможно лишь в том случае, если не нарушена его целостность. При нарушении физиологических свойств нервного волокна путем охлаждения, применения различных наркотических средств, сдавливания, а также порезами и повреждениями анатомической целостности проведение нервного импульса по нему будет невозможно.

Закон изолированного проведения возбуждения.

Существует ряд особенностей распространения возбуждения в периферических, мякотных и безмякотных нервных волокнах.

В периферических нервных волокнах возбуждение передается только вдоль нервного волокна, но не передается на соседние, которые находятся в одном и том же нервном стволе.

В мякотных нервных волокнах роль изолятора выполняет миелиновая оболочка. За счет миелина увеличивается удельное сопротивление и происходит уменьшение электрической емкости оболочки.

В безмякотных нервных волокнах возбуждение передается изолированно. Это объясняется тем, что сопротивление жидкости, которая заполняет межклеточные щели, значительно ниже сопротивления мембраны нервных волокон. Поэтому ток, возникающий между деполяризованным участком и неполяризованным, проходит по межклеточным щелям и не заходит при этом в соседние нервные волокна.

Закон двустороннего проведения возбуждения.

Нервное волокно проводит нервные импульсы в двух направлениях – центростремительно и центробежно.

В живом организме возбуждение проводится только в одном направлении. Двусторонняя проводимость нервного волокна ограничена в организме местом возникновения импульса и клапанным свойством синапсов, которое заключается в возможности проведения возбуждения только в одном направлении.

ЛЕКЦИЯ № 4. Физиология мышц

1. Физические и физиологические свойства скелетных, сердечной и гладких мышц

По морфологическим признакам выделяют три группы мышц:

1) поперечно-полосатые мышцы (скелетные мышцы);

2) гладкие мышцы;

3) сердечную мышцу (или миокард).

Функции поперечно-полосатых мышц:

1) двигательная (динамическая и статическая);

2) обеспечения дыхания;

3) мимическая;

4) рецепторная;

5) депонирующая;

6) терморегуляторная.

Функции гладких мышц:

1) поддержание давления в полых органах;

2) регуляция давления в кровеносных сосудах;

3) опорожнение полых органов и продвижение их содержимого.

Функция сердечной мышцы – насосная, обеспечение движения крови по сосудам.

Физиологические свойства скелетных мышц:

1) возбудимость (ниже, чем в нервном волокне, что объясняется низкой величиной мембранного потенциала);

2) низкая проводимость, порядка 10–13 м/с;

3) рефрактерность (занимает по времени больший отрезок, чем у нервного волокна);

4) лабильность;

5) сократимость (способность укорачиваться или развивать напряжение).

Различают два вида сокращения:

а) изотоническое сокращение (изменяется длина, тонус не меняется);

б) изометрическое сокращение (изменяется тонус без изменения длины волокна). Различают одиночные и титанические сокращения. Одиночные сокращения возникают при действии одиночного раздражения, а титанические возникают в ответ на серию нервных импульсов;

6) эластичность (способность развивать напряжение при растягивании).

Физиологические особенности гладких мышц.

Гладкие мышцы имеют те же физиологические свойства, что и скелетные мышцы, но имеют и свои особенности:

1) нестабильный мембранный потенциал, который поддерживает мышцы в состоянии постоянного частичного сокращения – тонуса;

2) самопроизвольную автоматическую активность;

3) сокращение в ответ на растяжение;

4) пластичность (уменьшение растяжения при увеличении растяжения);