Общим, по Беркли, является частный случай, поскольку он представительствует (репрезентирует) другие, столь же частные случаи. Таким образом, в собственном смысле слова общее в отличие от частного, согласно Беркли, вообще не существует. Беркли не находит общего в вещах, потому что он ищет его вне частного, обособленно от него. Об этом свидетельствует его основной аргумент, согласно которому общего не существует, так как каждый треугольник всегда является либо прямо-, либо тупо-, либо остроугольным, а не треугольником вообще, как будто общее – это то, что исключает частные определения предмета, а не объединяет их многообразие, определяя предмет (треугольник) закономерными соотношениями его существенных свойств. Отвергая существование общего в вещах, вследствие ложного понимания соотношения общего и частного, Беркли далее отрицает обобщение и в познании. Сведение общего к частному в вещах Беркли распространяет и на познание, так как, подставляя идеи на место вещей, он их отождествляет. Таким образом, в основе теории обобщения и абстракции у Беркли лежит идеалистическое отождествление идеи и вещи и ошибочное представление об общем как о чем-то обособленном от частного.
Критикуя теорию Беркли (а также Локка, Юма [176] и вообще эмпириков-сенсуалистов), Гуссерль [177] справедливо подчеркивает то, что вообще понятие (хотя бы то же геометрическое понятие треугольника) есть нечто идеальное и не может быть отождествлено с эмпирически данным треугольником, в том числе и с чертежом на бумаге или на доске. Но, утверждая идеальность понятия (геометрического треугольника), он превращает понятие, идею в обособленную от материальных вещей идеальную вещь, объект интеллектуального созерцания. Между тем как на самом деле они являются идеализированным посредством абстракции отражением существенных свойств изучаемых явлений.
Если у Беркли есть обобщение (абстрагирование одних частных, эмпирически данных свойств от других), но нет общего, то у Гуссерля есть общее – в виде идеального родового признака (species), – но нет обобщения, нет процесса, пути, который вел бы от вещей к общим понятиям о них. Общее содержание понятий, по Гуссерлю, дано якобы непосредственно в акте интеллектуального созерцания родовых признаков (species), так же как частное непосредственно дано в чувственном созерцании. Наличие этих двух, как будто независимых друг от друга и чужеродных актов познания служит гносеологическим «основанием» онтологического обособления общего и частного. Вместо того чтобы выступить как познание реальных, материальных вещей, процессов, явлений в закономерных взаимосвязях их существенных свойств, понятие само превращается в особую идеальную вещь или сущность – в духе платонизма и «реализма» средневековой философии. Но исходя именно из такого понимания общего как обособленного от частного, Беркли и пришел к отрицанию общего и растворению его в частном. Таким образом, если Гуссерль критикует Беркли, выявляя ряд слабых мест его концепции, то, с другой стороны, Беркли заранее опрокидывает концепцию Гуссерля, так как свои основные аргументы против существования общего он извлекает в принципе из той именно трактовки общего, которую защищает Гуссерль.
Вопрос о соотношении общего и частного – коренной вопрос теории обобщения и всей теории познания в целом. Абстрагирование общего в научном понятии не может означать отрыва его от частного. Отрыв общего от частного означает вместе с тем и отрыв общего понятия от предметов и явлений действительности. Отрыв понятий от предметов и явлений действительности, осуществляемый посредством отрыва общего от частного, неизбежно ведет к тому, что мышление в понятиях сводится к мышлению о понятиях, обособленных от их предмета. Дело, начатое таким образом, доводится до своего логического конца, когда к тому же еще и само понятие сводится к его определению. Это и есть тот путь, который с неизбежностью приводит к формалистическому пониманию мышления в понятиях. Подмена мышления о предметах и явлениях действительности оперированием над понятиями, обособленными от предметов, и над их дефинициями и есть основа формалистического подхода к мышлению. На самом деле мышление в понятиях никак не сводится к мышлению о понятиях; оно есть прежде всего познание предметов этих понятий.
Обобщение, выражающееся в абстрактных научных понятиях, возникает в результате 1) анализа, посредством которого существенное дифференцируется от несущественного (первое в качестве существенного необходимо выступает как общее для данной категории явлений, второе – как частное, специфицирующее отдельные явления); и 2) абстракции, посредством которой общие свойства, входящие в понятие, извлекаются из явления в его конкретности и «идеализируются», берутся в чистом виде, не осложненном посторонними привходящими обстоятельствами, маскирующими или осложняющими их собственную природу в ее внутренних закономерностях (пример: понятие «идеального» газа, строго отвечающего законам Бойля – Мариотта и Гей-Люссака).
С ролью абстракции в обобщении связаны так называемые «определения через абстракцию» [178] и, значит, вообще вопрос об определении и образовании понятий. При определении через абстракцию исходят из неких эмпирически данных объектов (например, из эмпирически данного множества предметов – при определении числа, из эмпирически данных фигур – при определении геометрических образований) и образуют абстрактное понятие, фиксируя те свойства данных объектов и те отношения между ними, которые остаются инвариантными при преобразованиях, которым они могут подвергнуться. В обобщенной форме отношение, посредством которого при определении через абстракцию образуется понятие, обозначается как «эквивалентность», равнозначность двух или нескольких объектов. Эквивалентность – отношение типа равенства, обладающее свойством коммутативности (если а ~ b, то и b ~ а) и транзитивности (если а ~ bи b ~ с, то и а ~ с). Посредством эквивалентности, исходя из множества предметов, определяется тождественность понятия, образованного из них таким образом. Так, например, направление определяется как свойство, общее всем параллельным прямым, остающееся инвариантным при переходе от одной из параллельных прямых к любой другой. (Такое определение направлений считается обоснованным, поскольку отношение параллельности обладает теми же свойствами – симметричностью и транзитивностью, что и отношение эквивалентности, а также равенства.) Аналогично геометрическое образование и его форма (треугольник, круг и т. д.) определяются как то в фигуре, что остается инвариантным при изменении положения и величины. Число определяется, как то свойство множества, которое остается инвариантным при соотнесении его элементов так, что каждый элемент одного множества однозначно соотносится с элементами другого множества.