Здравый смысл врет. Почему не надо слушать свой внутренний голос | Страница: 42

  • Georgia
  • Verdana
  • Tahoma
  • Symbol
  • Arial
16
px

То же, как мы обнаружили, касается и футбольных матчей: одного-единственного фрагмента информации — принимающая команда выигрывает в 58 % случаев — достаточно, чтобы повысить точность прогнозирования результата по сравнению со случайной догадкой. Существенно помогает и второе простое соображение: команда с лучшей статистикой побед и поражений должна иметь небольшое преимущество. Все же прочие дополнительные данные — как себя вел защитник в предыдущем матче, травмы, проблемы с подружкой у фулбэка — в лучшем случае улучшат прогноз на йоту. Почему? Потому что в сложных системах существует некий предел в предсказании результатов, и первые два фрагмента информации — это фактически все, что нужно для его достижения. Прогнозы в сложных системах, другими словами, подчиняются закону убывающей отдачи.

Разумеется, существуют обстоятельства, при которых важны даже очень незначительные улучшения в точности прогноза. Например, в сфере онлайн-рекламы или торговли акциями с высокой периодичностью можно выдавать миллионы и даже миллиарды прогнозов каждый день — и ставкой будут крупные суммы денег. В этих случаях усилия и затраты, связанные с использованием наиболее совершенных методов, позволяющих учитывать даже самые незаметные тенденции, скорее всего, оправданы. Во всех же других сферах бизнеса (от съемки фильмов до издания книг и разработки новых технологий), где в год делаются несколько дюжин — максимум сотен — прогнозов и где они обычно являются лишь одним из многочисленных аспектов процесса принятия решения, добиться той же степени точности удается с помощью относительно простых методов.

Исключение здесь, которым пользоваться не следует, — руководствоваться мнением одного-единственного человека. Особенно своим собственным. Дело в том, что мы отлично вычленяем факторы, релевантные для данной конкретной проблемы, но совершенно не умеем оценивать их важность друг относительно друга. Например, прогнозируя кассовые сборы в дни премьеры фильма, вы можете счесть крайне релевантными такие переменные, как общий и маркетинговый бюджеты, количество экранов, на которых этот фильм будет показан, а также предварительные рейтинги критиков, — и будете правы {181}. Но какой вес будет иметь плохая рецензия по сравнению с дополнительными 10 миллионами долларов маркетингового бюджета? Неясно. Неясна и роль интернет — и печатной рекламы по сравнению с мнением друзей.

Думаете, в таких типах суждений должны быть хороши эксперты? Как показал в своем эксперименте Тетлок, количественные прогнозы они делали не лучше неспециалистов — а то и хуже {182}. Основная проблема с опорой на экспертов, однако, состоит не в том, что они заметно хуже не-экспертов, а в том, что, поскольку они специалисты, мы склонны консультироваться только с одним из них за раз {183}. Гораздо разумнее узнать многие отдельные мнения — экспертов или не-экспертов — и вычислить среднее {184}. Грубо говоря, это и позволяют делать рынки предсказаний — равно как и опросы общественного мнения. При всех своих «прибамбасах» первые дают прогнозы чуть точнее вторых, но разница между ними гораздо менее существенна, чем польза от простого усреднения множества мнений. И наоборот, на основе статистических данных можно непосредственно оценить относительную важность различных предикторов — что и делает статистическая модель. Искусная, конечно, работает чуть лучше простой, но различие, опять-таки, незначительно {185}. В конце концов, как модели, так и толпа выполняют, по сути, одно и то же. Во-первых, для выявления релевантных прогнозу факторов они опираются на некую версию человеческого суждения, а во-вторых, оценивают и взвешивают относительную важность каждого из этих факторов. Как сказал однажды психолог Робин Дауэс, «весь фокус в том, чтобы знать, на какие переменные смотреть, и уметь их складывать» {186}.

Вместо того чтобы выискивать некий идеальный метод, гораздо целесообразнее просто определить, какие предсказания могут быть сделаны с минимальной ошибкой, а какие нет. При прочих равных, например, чем больше времени отделяет прогноз результата от самого события, тем большей окажется неточность. Все просто: какие методы ни используй, спрогнозировать потенциальный кассовый сбор фильма на стадии одобрения проекта гораздо труднее, чем за неделю или две до его премьеры. Кроме того, одни вычисления даются легче других, и с этим ничего не поделаешь. Как быть? Можно использовать любой из нескольких методов — или даже все вместе, как сделали это мы в исследовании рынков предсказаний, — и следить за их эффективностью в течение некоторого времени. Как я упоминал в начале предыдущей главы, отслеживание прогнозов не приходит само собой: мы делаем множество оных, но редко проверяем, насколько часто они оказываются верными. А ведь это — самое главное! Лишь установив степень точности, характеризующей те или иные предсказания, можно определить, какое значение следует им придавать {187}.

Когда будущее не такое, как прошлое

Как ни старайся, основное ограничение всех без исключения методов прогнозирования заключается в следующем: они надежны, только если в будущем случатся события того же типа, что и в прошлом, и с той же средней частотой {188}. Вне финансовых кризисов кредитные компании могут весьма точно спрогнозировать уровни невыплаты кредитов. Поведение отдельных людей сложно и непредсказуемо, но эти показатели на нынешней неделе, по сути, те же, что и на прошлой, — а значит, модели здесь работают достаточно хорошо. Но, как указывает ряд критиков прогнозирующего моделирования, многие события, интересующие нас больше всего, — начало финансового кризиса, возникновение революционной новой технологии, крах диктатуры или резкое снижение уровня преступности — интересны как раз потому, что они не такие, как в прошлом. В этих ситуациях опора на статистические данные приводит к серьезным проблемам.

Оглядываясь назад: модели, использовавшиеся многими банками для ценоопределения ипотечных деривативов до финансового кризиса 2008 года, — как печально известные ОДО [37] — чересчур сильно опирались на данные из недавнего прошлого, в течение которого цены на жилье только росли. Как результат, и аналитики и трейдеры существенно занизили вероятность общенационального снижения цен на недвижимость и, как следствие, крайне недооценили риск невыплат ипотечных кредитов и конфискации имущества {189}. В ретроспективе кажется, будто рынки предсказаний могли бы лучше предвосхитить кризис, чем все «спецы по анализу», сидящие в банках. Но кто бы участвовал в этих рынках? Да все те же самые люди — наряду с политиками, чиновниками и другими финансовыми специалистами, которые также не смогли предвидеть кризис. А значит, едва ли мудрость толпы что-нибудь изменила бы. Вполне возможно, именно она и втравила нас в эту историю. И если модели, рынки и толпы не могут предсказать таких «черных лебедей», как финансовый кризис, тогда как, черт возьми, их можем предвосхитить мы?