Вселенная внутри вас | Страница: 21

  • Georgia
  • Verdana
  • Tahoma
  • Symbol
  • Arial
16
px

Искусственный образ мира

Такая искусственная природа зрения является причиной возникновения оптических иллюзий. Ваш мозг непрерывно конструирует образы такими, какими они, по его мнению, должны быть, а не такими, какими их видят глаза. Так, например, на сетчатку проецируется перевернутое изображение, но мозг переворачивает его с головы на ноги. Этот феномен можно доказать с помощью специальных очков, переворачивающих изображение. Уже через несколько часов мозгу это надоедает и он восстанавливает правильную ориентацию картинки. Даже в таких очках люди опять начинают все видеть нормально.

Еще один пример того, как мозг вас обманывает, – это способ, с помощью которого он устраняет слепое пятно. Часть вашей сетчатки в том месте, где к ней подходит зрительный нерв, не обладает чувствительностью, так как там отсутствуют сенсоры. Однако ваш мозг, совмещая информацию, поступающую от двух глаз, ликвидирует этот пробел в изображении. Точно так же, когда вы смотрите на звезду в ночном небе, вам кажется, что ваши глаза не движутся и взгляд устремлен в одну точку. В действительности же глаза непрерывно совершают мелкие, как бы ощупывающие движения.

Эти движения глаз помогают мозгу создать более детальную картину окружающего мира. Совершаются они очень быстро – быстрее, чем любой другой частью тела. Глаз при этом поворачивается на 10 градусов менее чем за 1/100 секунды. Если бы вы действительно наблюдали все то, что отображается на сетчатке, картинка была бы расплывчатой и скачущей, но мозг постоянно редактирует его и устраняет то, что необязательно нужно видеть.

Эксперимент по введению мозга в заблуждение

Перед вами простой пример, позволяющий понять, каким образом ваш сложнейшим образом устроенный мозг может приходить к ложным выводам о форме и цвете предметов.

Все мы знакомы с тем, как должна выглядеть шахматная доска, а мозг хорошо разбирается в эффектах света и тени. Однако рисунок специально выполнен таким образом, чтобы ввести его в заблуждение. Вы совершенно отчетливо видите, что один из черных квадратов А в верхней части доски намного темнее, чем белый квадрат Б. На самом же деле оба квадрата окрашены в абсолютно одинаковый серый оттенок.

Это достаточно легко проверить, если согнуть страницу и совместить оба квадрата. Вы сами увидите, что их окраска совершенно одинакова. Если вы не хотите мять книгу, зайдите на сайт www.universeinsideyou.com, выберите раздел Experiments и в нем тему Chessboard experiment. В видеоролике квадрат А сдвигается к квадрату Б и вы можете собственными глазами увидеть, что они имеют абсолютно одинаковый оттенок.


Вселенная внутри вас

Оптическая иллюзия на шахматной доске


Квантовая реальность

Вы уже неоднократно слышали о том, что фотон, который пересек пространство, чтобы вы могли увидеть звезду, является квантовой частицей. Но что это на самом деле значит? В последнее время слово «квант» часто употребляется совершенно не к месту, особенно когда рекламируются какие-то новшества вроде «квантовой вибрационной терапии» или превозносится «квантовый скачок» в развитии какой-то отрасли. Это лишь создает путаницу в головах.

В физическом смысле квант – это мельчайшая возможная часть, самая крошечная порция чего-либо существующего. Как мы уже видели, первоначально это слово употреблялось по отношению к частице, которую позже назвали фотоном, но сегодня квантовая физика занимается изучением и других мельчайших частиц.

Когда в начале XX века в научной среде появилось понятие кванта, все очень быстро поняли, что это нечто очень странное и необычное, своего рода Страна чудес, где частицы ведут себя совсем не так, как более крупные объекты в привычном нам повседневном мире. Бросая мяч, мы можем предсказать, как он себя поведет (при наличии достаточной информации). Но когда мы имеем дело с местоположением или характером движения квантовой частицы, речь может идти только о вероятностях. Вероятность трансформируется в точные данные только в момент измерения.

Опыт Юнга

Пожалуй, самой яркой демонстрацией странностей квантового мира может служить эксперимент, который был проведен в начале 1800‑х годов Томасом Юнгом с целью доказательства волновой природы света. Для этого луч света направлялся через пару узких прорезей и затем попадал на экран, установленный на некотором отдалении. Вместо того чтобы высветиться на экране в виде двух ярких полос, он образовывал последовательность расплывчатых светлых и темных участков.


Вселенная внутри вас

Опыт Юнга


Это рассматривалось как доказательство волновой природы света, так как пятна на экране представляли собой интерференционный узор. Когда две волны на поверхности воды сталкиваются под некоторым углом друг к другу, возникает характерный узор. Если в точке соприкосновения обе волны находятся в верхней точке, их фазы складываются, образуя дополнительный подъем. Если обе находятся в нижней точке, в месте соприкосновения образуется более глубокая впадина. Если же в момент соприкосновения одна волна находится в верхней фазе, а вторая – в нижней, они взаимно компенсируются, и в этом месте можно наблюдать ровную поверхность воды. Это и есть интерференция. Очевидно, свет в этом опыте вел себя так же: темные полосы на экране обозначали компенсацию фаз, а светлые – их сложение.

Такая интерференция была бы невозможна, если бы свет представлял собой поток частиц. Представьте себе поток мелких частиц, направляемых в стену с двумя прорезями.

Они просто пролетели бы сквозь щели в прямом направлении, не образуя никаких узоров. Но, как вы уже знаете, свет – это поток фотонов. Почему же происходит интерференция? К слову, даже если вы будете запускать фотоны через щель по одному, они все равно создадут интерференционный узор. С чем же они в таком случае взаимодействуют?

Вот тут-то и начинаются квантовые странности. Это происходит из-за того, что фотон проходит сквозь обе щели и интерферирует сам с собой! Вспомните, что квантовая частица может избрать любой возможный путь от А до Б, но с разной вероятностью. Поскольку фотон не имеет точного местоположения, а только комбинацию вероятностей, он проходит через обе щели. Вероятность того, где он может быть найден, распределяется подобно волне, и именно эта вероятность создает интерференционный эффект частиц.

Если вы поставите специальные детекторы, которые будут определять, через какую именно щель прошел фотон, интерференционный узор исчезнет, а на экране появятся яркие точки, чего и следовало бы ожидать, если бы фотоны были просто частицами. При проведении измерений фотон вынужден занимать определенное положение в пространстве, а не распределяться по нему в соответствии с вероятностью, поэтому проходит только сквозь одну щель. Достаточно лишь обратить внимание на фотон, чтобы он полностью изменил свое поведение.

Время выполнения скрипта:0.0309сек.