Со стороны может показаться, что канадский художник – безнадежный оптимист и утопист. Но синтетическая жизнь уже существует, и подвижники этой новой технологии всерьез присматриваются к астероидам как к возможному месту обитания экзотических существ, которые будут когда-нибудь созданы биоинженерами. С 1996 года функционирует проект Biota.org, объединяющий усилия десятков специалистов, пытающихся воссоздать в цифровом виде сложные эволюционные процессы. Участники проекта надеются с помощью соответствующих программ не только понять, как зарождается жизнь и появляются первые протоклетки, но и смоделировать развитие синтетических существ, конструируемых под жесткие условия обитания, в том числе под условия открытого космоса. Понятно, что это дело не ближайших лет, а десятилетий, однако и ракеты не сразу строились, а полеты на Луну пятьдесят лет назад встречались лишь в фантастических романах.
Промежуточный итог. Белые пятна в черном космосе
Итак, мы вспомнили, что в Солнечной системе существует множество объектов, которые представляют не меньший интерес, чем Луна, Марс и Венера. Астероиды, спутники планет, точки Лагранжа. Они столь же привлекательны с научной точки зрения, их разнообразие велико, но знаем мы о них куда меньше – сказалось многолетнее пренебрежение, обусловленное завышенными ожиданиями и ошибочными представлениями о природе соседних планет.
Изменение космической стратегии в связи с экономическим кризисом заставляет по-новому взглянуть на малые тела, находящиеся в пределах орбиты Марса. В принципе они достижимы даже при том уровне техники, которыми располагают развитые страны. Мы можем запускать к ним исследовательские аппараты, совершать мягкие посадки, брать пробы грунта и возвращать их на Землю. Мы можем смонтировать пилотируемый космический корабль, используя готовые модули Международной космической станции, и отправить его к астероиду. И все это необходимо сделать в ближайшем будущем – прежде всего для того, чтобы выяснить, насколько богатыми ресурсами обладают астероиды, что они могут дать для расширения человеческого присутствия в космосе.
Однако освоение этих ресурсов пока не может быть начато, поскольку нет соответствующих средств: эффективных энергоустановок, механизмов по переработке космического грунта, автономных химических фабрик. Все это можно получить, организовав полигон на Луне.
Есть и другой путь – вкладываться в развитие биотехнологий, которые в будущем способны преодолеть сразу две трудности, стоящие перед космической экспансией: проблему создания замкнутой биосферы межпланетного корабля и проблему эффективной переработки месторождений астероидов. К сожалению, мы не можем обсуждать конкретные проекты, все пока сводится к намерениям, «сырым» программам и красивым картинкам, за которыми не стоит ничего, кроме фантазии художников. Посему эксплуатация астероидов – мечта того же уровня, что и человеческая колония на Марсе.
Кстати, о Марсе. Критики концепции «Гибкого пути» указывают, что ее авторы, отказавшись (хотя и не категорически) от Луны, не учли особенностей технологии освоения планет. Это замечание резонно, ведь Луна выглядит более подходящим полигоном для подготовки экспедиции к Марсу, нежели астероиды, на которых царит микрогравитация. На Луне и Марсе главная проблема – как сесть и взлететь; на астероиде – как удержаться у поверхности. Совершенно противоположные по смыслу задачи! Таким образом, создавая транспортные средства для покорения астероидов, мы по факту тормозим марсианский проект, а ведь он остается приоритетным в глазах правительства и общественности.
Критики совершенно правы! Два равноценных направления в развитии космонавтики будут тормозить друг друга, отнимая скудные ресурсы. Так случилось с орбитальными станциями, которые изначально создавались как «промежуточные пункты» на дороге к другим мирам, а затем обрели статус самостоятельной цели, под которую пилотируемая космонавтика «затачивалась» целых тридцать лет без особого успеха. Поэтому нужно выбрать: Марс или малые тела. И совершенно ясно, что если ставить вопрос ребром, то выбор останется за Марсом – хотя бы потому, что он больше, выглядит эффектнее, имеет бурное прошлое, мощные привязки к человеческой культуре, и на нем, возможно, будут найдены инопланетные формы жизни.
Увы, но сами по себе малые тела не могут служить главной стратегической целью космической экспансии. Они – лишь средство, которым мы пока не умеем пользоваться. Но неужели в обозримой Вселенной для человечества нет более достойной цели, чем Марс?.. Об этом мы поговорим в следующей главе.
Я хорошо помню времена, когда ученые считали Солнечную систему уникальной. В ходу была теория советского математика Отто Шмидта, который утверждал, что все известные планеты, включая Землю, возникли в результате «счастливой случайности». То есть по ходу своего движения вокруг центра Галактики наше светило вошло в облако «темной материи», состоящее из метеороидов, и увлекло его за собой; потом из этого вещества за счет гравитационного «стягивания» сформировались планеты, спутники и астероиды. Теорию оспаривали многие астрономы, ведь она противоречила здравому смыслу и была по сути развитием гелиоцентризма, устаревшего еще в XVIII веке. Но сторонники Шмидта требовали твердых доказательств: предъявите планеты у других звезд, тогда и поговорим. А вот предъявить было нечего, ведь астрономические инструменты не позволяли увидеть относительно малые объекты на фоне яркой звезды с такого огромного расстояния. Революция в этой сфере произошла только в середине 1990-х годов, опять же благодаря новым методам обработки информации, которые дали нам современные компьютеры. И сегодня счет найденных экзопланет (так называют планеты у звезд) идет на тысячи. Сторонники «уникальности» посрамлены, а ученые открывают столь удивительные миры, что рядом с ними меркнут самые разнузданные фантазии.
Для обнаружения экзопланет чаще всего используется эффект Доплера. Звезда, имеющая планету, испытывает под ее гравитационным воздействием колебания скорости «к нам – от нас», которые можно измерить, наблюдая доплеровское смещение спектра. На первый взгляд, это представляется весьма трудной задачей. К примеру, под действием Земли скорость Солнца колеблется на сантиметры в секунду. Под действием Юпитера – на метры в секунду. При этом заметное расширение спектральных линий звезды само по себе соответствует разбросу скоростей в 1000 км/с. То есть даже в случае с Юпитером следует измерять смещение спектральных линий на тысячную долю от их ширины! И все же эта сложнейшая задача была блестяще решена.
Новейший метод поиска планет основан на наложении спектра звезды на сильно изрезанный линиями калибровочный спектр. Для калибровки используются пары йода в ячейке, помещаемой перед спектрометром. Температура ячейки поддерживается строго постоянной. Спектрометр выдает суперпозицию двух сильно изрезанных спектров поглощения – звезды и йода. Небольшие смещения спектра звезды приводят к изменениям суперпозиции на всех частотах, что значительно увеличивает точность измерения. В результате удалось получить точность определения колебаний скорости до 3 м/с, а сейчас она приближается к 0,3 м/с.