Как лгать при помощи статистики | Страница: 2

  • Georgia
  • Verdana
  • Tahoma
  • Symbol
  • Arial
16
px

Иван Бегтин,

директор некоммерческого партнерства «Информационная культура», член общественного совета при Федеральной службе государственной статистики

Предисловие к русскому изданию

Человеку свойственно ошибаться, и особенно серьезные ошибки случаются, когда умозаключения строятся на основе статистических данных, «холодных цифр». Наше сознание странным образом признает за математикой право на абсолютную истину.

Статистика, как рассказывает нам Даррелл Хафф в своем бестселлере «Как лгать при помощи статистики», это такая хитрая, закамуфлированная отрасль математики. С одной стороны, она оперирует цифрами, пользуется четкой логикой и понятными методами расчетов. С другой стороны, предметом той статистики, которая нас обманывает, всегда является поведение человека (или отношение человека к чему-то, вплоть до отношения к другим людям). Цифры продают нам нас же самих, завернутых в формулы, статистические распределения и байесовские множества.

Мы видим цифры, мы видим математический авторитет тех, кто ими пользуется, и мы беззащитны перед статистикой и манипуляторами, как беззащитен первоклассник перед учителем, который доказывает, что 2 + 2 = 5.

Статистика (и это, наверное, самая интересная часть книги Хаффа) настолько злокозненна, что регулярно обманывает и теоретиков, и прикладных исследователей, и тем более политиков, которые очень любят оперировать ею. Используя исторические примеры (от «соломенных опросов», чуть не разрушивших карьеру Дж. Гэллапа в 1930-х гг., до дискуссий о глобальном потеплении), Даррелл Хафф не только помогает читателю разобраться в прошлых обманах, но и дает ему инструмент проверки на будущее.

За последние 25 лет в большинстве ведущих университетов мира статистика и ее методы стали обязательным компонентом любого образования, включая самое что ни на есть гуманитарное, по той причине, что ученому, практику, юристу и даже филологу нужно иметь ту самую «бритву Оккама», которой рассекается любая путаница. В нашем веке «больших данных» это особенно важно – в бесконечном океане собираемых цифр очень важно избегать как базовых ошибок (о чем подробно рассказывает книга Даррелла Хаффа), так и некритического подхода к любому анализу, представляемому как мнение большинства. Большинство, увы, не ведет нас вперед, а упорно держится за то немногое, что у него есть, оправдывая свой «консерватизм» именно ложным выводом из ложной же статистики.

Василий Гатов,

приглашенный исследователь Центра коммуникационного лидерства и политики (Школа коммуникаций и журналистики Университета Южной Калифорнии)

Моей супруге посвящаю. С полным на то основанием


Благодарности

Милые примеры откровенных нелепостей и надувательских ухищрений, которыми, как перчинками, приправлена эта книга, я собирал где только можно и не без посторонней помощи. Откликнувшись на мой призыв, посланный через Американскую статистическую ассоциацию, несколько профессиональных статистиков – а они, уж вы мне поверьте, оплакивают ненадлежащее использование статистики не менее искренне, чем все прочие, – поделились со мной примерами из своих личных коллекций. Эти достойные люди, думается мне, будут только рады, если их имена останутся неназванными на этих страницах. Ценные примеры я почерпнул также из целого ряда книг, главным образом из следующих: «Бизнес-статистика» (Business Statistics) Мартина Брумбауха и Лестера Келлогга, «Как измерять общественное мнение» (Gauging Public Opinion) Хэдли Кэнтрила, «Графическое представление данных» Уилларда Бринтона, «Практическая бизнес-статистика» (Practical Business Statistics) Фредерика Крокстона и Дадли Коудена, «Основы статистики» (Basic Statistics) Джорджа Симпсона и Фрица Кафки, «Простейшие статистические методы» (Elementary Statistical Methods) Хелен Уокер.


Как лгать при помощи статистики

Введение

«Что-то больно много преступности в этих краях», – заметил мой свекор вскоре после того, как переехал из Айовы в Калифорнию. Так оно и было – если верить газете, которую он читал. Газета была того сорта, что не пропустит ни единого преступления в собственной округе, и еще она славилась тем, что какому-нибудь убийству в Айове уделяла гораздо больше внимания, чем ведущая ежедневная газета той местности, где собственно и произошло убийство.

Вывод моего свекра был статистического свойства, если не по форме, то по существу, и основывался на выборке, причем необычайно предвзятой. Как и многие образцы куда более изощренно сфальсифицированных статистических данных, его вывод грешил мнимой обоснованностью и исходил из той посылки, что место, отведенное газетой под криминальную хронику, и есть мерило уровня преступности.

Несколько лет назад с дюжину исследователей независимо друг от друга опубликовали данные об антигистаминных препаратах. Во всех упоминалось о значительном проценте излечившихся от простудных заболеваний после приема этих лекарств. Началась большая шумиха (по крайней мере рекламная), и спрос на эти препараты резко вырос. Он был основан на вечных упованиях на чудо и еще на удивительном нежелании отвлечься от статистики и взглянуть в глаза давно известной истине. Как когда-то говаривал писатель-юморист Генри Фелсен (весьма далекий от медицины), при должном лечении простуда проходит через семь дней, в противном случае она сама собой пройдет через неделю.

Точно так же обстоят дела со многим из того, что вы читаете и слышите. Средние величины, зависимости, тенденции и графики не всегда есть то, чем кажутся. Подчас в них таится много больше интересного, чем видно на первый взгляд, а иногда и куда как меньше.

Таинственный язык статистики, столь притягательный в условиях культуры, которая ставит во главу угла факты, используют для того, чтобы создавать сенсации, преувеличивать, сбивать с толку и чрезмерно упрощать. Статистические методы и термины необходимы, когда дело касается массовых данных о социальных и экономических тенденциях, деловой конъюнктуре, опросах общественного мнения, переписях населения. Но в отсутствие авторов, которые используют статистическую терминологию добросовестно и со знанием дела, равно как и читателей, понимающих, что означают все эти термины, результатом может стать та еще ахинея.

В современной научно-популярной литературе ругаемый на все корки статистик почти вытеснил образ самоотверженного героя-труженика в белом халате, который дни и ночи корпит над своими пробирками в неверном свете лабораторных ламп, даже не помышляя о плате за переработки. Подобно тому, как «немножко туши да щепотка пудры превратят в красавицу любую лахудру», так и статистика способна выдавать многие весьма немаловажные факты совсем не за то, что они есть в реальности. Искусно преподнесенная статистика куда лучше, чем гитлеровский прием «большой лжи»: она вводит в заблуждение, но с вас взятки гладки, и никто не подкопается.

Эта книга – своего рода руководство для начинающих, в котором изложены азы применения статистики в целях обмана. У читателя могут возникнуть подозрения, что издание слишком уж смахивает на инструкцию для мошенников. Полагаю все же, что смогу оправдать ее в манере бывшего грабителя, опубликовавшего мемуары, в сущности представляющие собой учебный курс на тему о том, как подобрать отмычку к замку и научиться ступать бесшумно: жуликам и ворам все эти трюки и так давно известны, а порядочные люди должны узнать о них, чтобы уметь защитить свой дом от непрошеных гостей.