1. Simon S., Bouville A., Land Ch. Fallout from nuclear tests and cancer risks // American Scientist. 2006. Vol. 94. P. 48 – 57.
2. Origins of Human cancers: Book A. Incidence of Cancers in Humans / H. Y. Hiatt, J. D. Watson, J. A. Winstein (Ed.). Cold Spring Harbor Laboratory, USA, 1977.
3. Murphy Sh. Pesticides // Toxicology: The Basic Science of Poison. New York: Macmillan, 1975. P. 408 – 453.
4. Pesticide Residues in Food – 1999: Part II. Toxicological Evaluations. Geneva: WHO, 2000.
5. Davies G., Lennartsson M. Organic Vegetable Production. Marlborough: The Crowood Press, 2005.
6. International Herald Tribune. 2009. March 23. P. 13.
7. Коршунов В. В., Коршунов В. Д. Перспективы развития российского рынка минеральных удобрений // Эко. 2008. № 12. С. 127 – 137.
8. Russell J. Coal use rises dramatically despite impacts on climate and health // Vital Signs 2009. Washington: Worldwatch Institute, 2009. P. 26 – 28.
9. Projection of Tobacco Production: Consumption and Trade to the Year 2010. FAO Report, Rome.
10. Mudur G. India has some of the highest cancer rates in the world // British Medical Journal. 2005. Vol. 330. P. 215.
11. Aizen M., Harder L. Too-busy bees // International Herald Tribune. 2010. March 26. P. 8.
12. Jordan L. Pesticide trade shows new market trends // Vital Signs 2006 – 2007. New York: W. W. Norton & Company, P. 28 – 29.
Сельскохозяйственное производство, которое существует около 10 тыс. лет, постоянно увеличивало продуктивность полей, обеспечивая питанием растущее население Земли. Это достигалось введением в культуру новых растений, орошением, использованием навоза как удобрения, севооборотами с клевером и люцерной, которые способны фиксировать азот из воздуха и способствовать таким образом улучшению плодородия почв. Широкое применение минеральных удобрений началось с конца XIX в., когда население планеты превысило 1 млрд человек. Повсеместно расширялись посевные площади – за счет вырубки лесов, осушения болот и создания террасных полей на горных склонах. Уже с древних времен происходило постоянное улучшение сортового состава культурных растений и пород домашних животных, сначала простым отбором, а затем и с помощью гибридизации – методов, которые, по существу, копировали процессы, постоянно происходящие в природе. Около 80 лет назад к традиционной внутривидовой гибридизации разных сортов прибавились отдаленная гибридизация разных видов и полиплоидизация – удвоение числа хромосом, которые могли создавать более крупные плодовые органы, преобразовывать однолетние растения в многолетние и таким образом расширять ареалы земледелия. Однако развитие сельского хозяйства все время отставало от потребностей быстро растущего населения, в результате голод и гибель людей от голода случались (и имеют место сейчас) не только в отдельных странах, но и нередко в больших регионах и на субконтинентах. Африка, Индия, Китай и почти вся Юго-Восточная Азия не были в достаточной степени обеспечены ресурсами продовольствия в течение столетий, но это почти не сказывалось на росте населения.
В 1961 г. Индия, население которой приближалось к половине миллиарда, оказалась на грани массового голода. Для реформы сельского хозяйства правительство страны пригласило тогда уже известного селекционера Нормана Борлауга (Norman Borlaug), новые сорта пшеницы которого превратили Мексику из импортера в экспортера зерна. Борлауг вел гибридизацию и селекцию зерновых на уменьшение массы листьев и увеличение размеров колоса. В естественных биоценозах колос злаковых – это орган их размножения, а стебель должен быть высоким, чтобы пробиться к свету в окружении других растений. На возделанном поле такой необходимости нет, и выведенные Борлаугом карликовые растения могли давать с гектара такое же количество зерна, как и традиционные высокие сорта. К тому же, имея меньшую поверхность листьев, они требовали меньше влаги и были необыкновенно засухоустойчивыми. Применяемые на полях удобрения в большей степени шли на формирование зерен, а не листьев и стебля. Такую селекционную технологию применили и для получения новых сортов риса. К 1968 г. в Индии уже внедрялись карликовые сорта, которые при оптимальном удобрении давали 100 центнеров риса с гектара. В течение пяти лет производство риса в Индии удвоилось, а затем и утроилось. Этот успех известен в современной истории земледелия как «зеленая революция». В 1974 г. Всемирная конференция по продовольствию в Риме приняла программу полного искоренения голода на Земле в течение десяти лет. «…ни один мужчина, женщина или ребенок не будут ложиться спать голодными», – заявил на конференции, при всеобщем одобрении, Генри Киссинджер [1].
В 1961 г. мировое производство зерна в расчете на каждого жителя планеты составило 261 кг, а к 1985 г. оно выросло до 343 кг. Но затем этот показатель начал снижаться: в 1988 г. он упал до 306 кг, а к 1995-му – до 301 кг. Число голодающих в мире не уменьшалось, а росло, достигнув 1 млрд человек в 1996 г. Основной причиной этого стало не сокращение урожаев, а слишком быстрый рост населения планеты, превысившего 6 млрд [2]. В Индии и Китае, суммарное население которых составило к концу XX в. 2,3 млрд, не было голода, и эти страны продолжали оставаться основными экспортерами риса. Главные очаги недостаточного питания переместились в Африку и в те страны Азии и Южной Америки, в которых основным источником калорий были не рис или пшеница, а кукуруза, урожайность которой достигла максимума значительно раньше. В 1965 – 1985 гг. урожаи кукурузы росли медленнее, чем урожаи риса и пшеницы. Кукуруза гораздо беднее белком, чем рис или пшеница. Поэтому в обширных очагах голодания проблема осложнялась белковой недостаточностью питания. В создавшейся ситуации основные надежды в борьбе с голодом стали возлагать не на традиционную гибридизацию и селекцию, а на открытую именно в то время генетическую инженерию, которая давала возможность не просто увеличить урожаи, а изменить состав зерна. Одним из проектов генетических модификаций растений стала, естественно, и попытка улучшить качественный аминокислотный состав белков кукурузы путем внедрения в ее клетки генов новых ферментативных систем. Генетическая инженерия обещала не только увеличить биологическую полноценность продовольственных культур, ни и улучшить их вкусовые качества и даже объединить питательные и лечебные свойства растений.
Нередко суть аргументов в пользу генетических модификаций состоит в том, что, создавая такие модификации, ученые делают ту же самую работу, которой в течение тысячелетий занимались селекционеры, скрещивая разные сорта растений и объединяя таким образом их генетические системы. В действительности между гибридизацией и генетическими модификациями существует принципиальное различие. При традиционной гибридизации скрещивания проводятся внутри видов, пшеницу скрещивают с пшеницей, рожь с рожью. Иногда удается скрещивать и разные, но близкородственные виды. Таким образом, например, удалось получить пшенично-пырейные гибриды. Всем известны мулы – гибриды лошади и осла. Но между представителями более отдаленных видов половая гибридизация уже невозможна. При трансгенной гибридизации нет природных ограничений. В геном пшеницы можно ввести генные комплексы или отдельные гены воробья, трески или холерного вибриона. Это осуществляется не путем полового скрещивания, а путем впрыскивания с помощью ультрамикропипеток в ядро яйцеклетки ДНК, выделенной из других растений, бактерий или животных. Новая ДНК встраивается в геном яйцеклетки, приводя к образованию трансгенного растения или животного. Внедрение новых генов в нужный участок хромосом не всегда происходит удачно, и из полученных трансгенных растений проводится отбор. Аналогичные процессы происходят и в природе при вирусных инфекциях. Вирус, например, гепатита B или иммунодефицита, попадая в кровь, внедряется в первом случае в ДНК хромосом клеток печени, а во втором – в ДНК хромосом лимфоцитов крови. Эти вирусы размножаются вместе с размножением клеток. В эволюции животных и растений вирусная ДНК может переходить из поколения в поколение, модифицируясь иногда в полезный ген. Геномы человека, животных и растений содержат много участков ДНК, которые попали в хромосомы в результате вирусных инфекций миллионы лет назад и были постепенно инактивированы. Это один из вариантов генетической изменчивости. Такой же способностью внед рять свою ДНК в геномы бактерий обладают бактериофаги. Исследователи освоили этот механизм для внедрения в хромосомы новых генов. Именно таким образом в геном бактерий был «вшит» ген гормона человеческого инсулина, необходимого больным диабетом. В прошлом инсулин для инъекций получали из поджелудочной железы свиней путем очень сложных процедур. Инсулин, получаемый из культур бактерий, намного дешевле, и в настоящее время около 80% больных диабетом получают инъекции трансгенного инсулина.