Как-то осенним днем 1968 года, работая в одиночку, я стимулировал одну из клеток и в изумлении увидел, что это вызывает сильное сокращение жабр (рис. 13–5). Мне удалось впервые идентифицировать мотонейрон аплизии, управляющий определенной формой поведения! Мне не терпелось показать это Ирвингу. Мы оба были поражены таким сильным поведенческим эффектом стимуляции единственной клетки и поняли, что это дает нам надежду идентифицировать и другие мотонейроны. И действительно, в течение нескольких месяцев Ирвинг обнаружил еще пять таких мотонейронов. Мы предположили, что эти шесть нейронов отвечают за двигательную составляющую рефлекса втягивания жабр, потому что, когда мы не давали этим клеткам запускать потенциал действия, никакой рефлекторной реакции не наблюдалось.
13–5. Обнаружение мотонейрона, ответственного за определенную форму поведения аплизии. После идентификации отдельных нейронов абдоминального ганглия аплизии появилась возможность картировать их связи. Например, стимуляция клетки L7 (одного из мотонейронов этого ганглия) приводит к резкому сокращению жабр.
В 1969 году ко мне присоединились Винсент Кастеллуччи — приятный и высококультурный, получивший прекрасное биологическое образование канадский ученый, который регулярно с разгромным счетом выигрывал у меня в теннис, и Джек Бирн — технически одаренный аспирант, специализировавшийся на электротехнике и внедривший строгие методы этой дисциплины в нашу общую работу. Втроем нам удалось выявить и сенсорные нейроны рефлекса втягивания жабр. Затем мы обнаружили, что помимо непосредственных связей сенсорные нейроны образуют с мотонейронами опосредованные синаптические связи через интернейроны (вставочные нейроны). Эти два набора связей, непосредственные и опосредованные, обеспечивают передачу информации о прикосновении на мотонейроны, которые и производят саму рефлекторную реакцию за счет своих связей с тканями жабр. Более того, одни и те же нейроны оказались задействованы в рефлексе втягивания жабр у всех исследованных нами моллюсков и одни и те же клетки всегда образовывали одинаковые связи друг с другом. Таким образом, нейронное устройство, по крайней мере одной формы поведения аплизии, оказалось на удивление постоянным (рис. 13–6). Со временем мы обнаружили ту же определенность и неизменность и в нейронных сетях, обеспечивающих другие формы поведения.
13–6. Нейронная сеть, обеспечивающая рефлекс втягивания жабр у аплизии. Система сифона включает 24 сенсорных нейрона, но прикосновение к любой точке его поверхности активирует только шесть из них. У любой аплизии одни и те же шесть нейронов передают осязательный сигнал одним и тем же шести мотонейронам, обеспечивая рефлекс втягивания жабр.
Наша с Купферманом статья «Нейронное управление поведенческой реакции, осуществляемой при посредничестве абдоминального ганглия аплизии», опубликованная в 1969 году в журнале Science, заканчивалась на оптимистичной ноте: «Судя по преимуществам, которыми обладает этот метод нейрофизиологических исследований клеток, он может оказаться полезным для изучения нейронных механизмов обучения. Результаты уже проведенных экспериментов указывают на то, что поведенческие рефлекторные реакции можно видоизменять, демонстрируя простые формы обучения, такие как сенсибилизация, привыкание <…>. Использование методов выработки классических или инструментальных условных рефлексов может позволить исследовать и более сложные формы видоизменений поведения».
После того как мы установили, что нейронное устройство исследованной нами формы поведения неизменно, встал принципиальный вопрос: как форма поведения, управляемая строго определенной нейронной цепью, может изменяться в результате полученного опыта? Один вероятный ответ на этот вопрос предложил Кахаль, предположивший, что обучение может приводить к изменению силы синапсов между нейронами, тем самым усиливая связи между ними. Интересно, что Фрейд в «Проекте научной психологии» в общих чертах наметил нейронную модель психики, включающую подобный механизм обучения. Он постулировал, что в восприятии и работе памяти задействованы две разные группы нейронов. В нейронных цепях, обеспечивающих восприятие, синаптические связи постоянны, что обеспечивает постоянство воспринимаемого нами мира. В свою очередь, в нейронных цепях, обеспечивающих работу памяти, есть синаптические связи, сила которых изменяется в ходе обучения. Этот механизм составляет основу памяти и высших когнитивных функций.
Работы Павлова и бихевиористов, а также Бренды Милнер и когнитивных психологов привели меня к пониманию того, что при разных формах обучения возникают разные формы памяти. Поэтому я переформулировал идею Кахаля и использовал это новое представление как основу для разработки аналогов обучения у аплизии. Результаты исследования показали, что стимуляция разного характера приводит к разным изменениям синаптических связей. Но мы с Тауцем не исследовали, как изменяется настоящее поведение, и поэтому не имели доказательств того, что обучение действительно обеспечивают изменения синаптической силы.
Более того, сама идея, что синапсы могут изменяться в результате обучения и тем самым принимать участие в хранении памяти, отнюдь не была общепринятой. Через два десятилетия после того, как Кахаль сформулировал эту идею, выдающийся гарвардский физиолог Александер Форбс предположил, что память поддерживается динамическими, непрерывными изменениями в замкнутых самовозбуждающихся нейронных цепях. В подтверждение этой идеи Форбс приводил рисунок работы Рафаэля Лоренте де Но, ученика Кахаля, показывающий нейроны, связанные друг с другом в замкнутые проводящие пути. Эту идею далее разработал психолог Дональд Хебб в своей влиятельной книге 1949 года «Организация поведения: нейропсихологическая теория». Хебб доказывал, что такие ревербераторные цепи ответственны за кратковременную память.
Делиль Бернс, один из ведущих исследователей биологии коры головного мозга, тоже оспаривал представление о том, что физические изменения в синапсах могут служить средством хранения памяти: «Механизмы синаптического облегчения, предложенные в качестве претендентов на роль объяснения работы памяти, <…> не оправдали надежд. Прежде чем видеть в любом из них клеточные изменения, сопровождающие выработку условного рефлекса, пришлось бы сильно увеличить масштаб времени, в течение которого наблюдалась их работа. Неоднократно показанная неудовлетворительность синаптического облегчения как объяснения работы памяти заставляет задуматься о том, не может ли оказаться, что нейрофизиологи искали механизмы не того типа».
Некоторые ученые сомневались в самой возможности процесса обучения в пределах постоянных нейронных цепей. Они считали, что обучение должно быть частично или даже полностью независимым от заранее установленных проводящих путей. Этого мнения придерживались Лешли и некоторые представители влиятельного направления в когнитивной психологии раннего периода — гештальтпсихологии. Разновидность этой идеи сформулировал в 1965 году нейрофизиолог Росс Эйди. Он начал свои доводы с того, что «ни для одного нейрона в естественной или искусственной изоляции от других нейронов не была показана способность сохранять информацию, соответствующую обычным представлениям о памяти». Затем он доказывал, что электрический ток, проходящий пространство между нейронами, может передавать сигналы, роль которых «по меньшей мере эквивалентна потенциалам действия нейронов в передаче информации и, что еще важнее, в ее записи и считывании». Обучение представлялось Эйди и Лешли явлением совершенно таинственным.